Ariel + Aurora Apartments

Ariel and Aurora Apartments are a set of new, high rise residential towers in Granville. The new development strives to provide convenience and comfort for its community with retail and commercial tenancies on the lower floors of each building and pockets of green spaces 

At 19 storeys, Aurora Apartments is not only the tallest building in The Altitude Collection, but also in Granville. The building features a large, full length glass atrium to maximise natural light and ventilation throughout. Residents also have access to a communal rooftop Sky Garden offering 360° views of Sydney’s skyline. Holmes Fire developed a cost saving bespoke smoke control strategy for the atrium and demonstrated through CFD modelling that the strategy will provide an adequate level of fire safety to occupants in the building. 

Ariel Apartments offers its residents similar views as its neighbour Aurora and features a rooftop Sky Garden as well. The building stands at 18 storeys and does not have an atrium, instead the apartments have been designed to increase natural ventilation and lighting. 

Holmes Fire was engaged from the design stage of this project to provide fire engineering services for both buildings. A number of Performance Solutions were required to support the design intent for both buildings relating to glazed elements in fire walls, travel distances to exit on residential and carpark levels, the use of jet fans in the mechanical ventilation at the carpark areas and the staged evacuation strategy of the towers.  

Holmes Fire worked closely with the architects and project team to ensure that the solutions offered would not inhibit the design intent to create an inviting and convenient area for the community and maximise natural ventilation and lighting for residents.  

Little National Hotel

Currently under construction, Little National Hotel promises to offer local and international travellers a luxurious escape in the heart of Sydney CBD. Utilizing the existing Wynyard Walk structure above Wynyard Station, the hotel boasts 230 contemporary rooms enveloped by a striking curved façade and vertical garden. Guests have access to a modern gym, library and exclusive rooftop lounge and bar with city views.

The hotel structure comprises a steel-framed structure with a composite steel-concrete floor system. Holmes Fire’s team of structural fire engineers, in collaboration with the structural engineers’ team from TTW, developed a unique optimised fire protection strategy for the steel structure. Holmes Fire was able to demonstrate via an advanced thermal and structural fire analysis, utilising non-linear finite element software, that the structural frame with an optimised fire protection strategy can maintain structural stability throughout the entirety of a credible fire scenario. This resulted in major cost savings for the client, as the solution allowed for reduced passive protection of steel members, reducing material and labour costs.

In addition to the structural fire assessment, a number of Performance Solutions were required to support the design intent of the building. These included, for example, reduced fire resistance levels to particular areas, external separation of fire compartments, service penetrations through fire rated elements, travel distances to exits, egress width, stair discharge, protection of fire hydrant booster etc. Holmes Fire also analysed any potential impact the fire strategy of the new hotel may have on the existing Wynyard Walk building and helped enable the two buildings having some combined fire services.

One particular challenge faced in this project was the proposed design option of having an external stair instead of an enclosed fire-isolated stair serving levels above 25m in height. This is not permitted in the BCA Deemed-to-Satisfy compliant provisions due to the risk that people would suffer vertigo and the risk that weather conditions, particularly wind, may become more severe above this height. Holmes Fire helped enable this design by performing a detailed analysis of the wind effects on the external stair to show that the wind velocity wouldn’t impact occupant evacuation conditions.

New Performing Arts Venue | QPAC

Nestled in the heart of Brisbane with a design inspired by Brisbane River and Brisbane’s heritage fabric, the New Performing Arts Venue (NPAV) is set to offer a new landmark on the banks of the Brisbane River. Featuring a sinuous, folding glass facade with an impressive timber cladding lining the internal walls, this performing arts centre is pushing the envelope for cultural building designs in Brisbane. NPAV will provide the current Queensland Performing Arts Centre with an additional 1500 seats and studio spaces to support the growing needs of the Brisbane community and tourism industry.

To deliver the Fire Engineering strategy, Holmes Fire is currently undertaking computational fluid dynamics (CFD) modelling and egress modelling that are proving critical to execution of the spatial planning and overall architecture of the building. The project is still under the final design phase so additional changes could still be presented.

Holmes Fire is also providing specialist structural fire engineering services to rationalise and optimise the level of protection to the steel elements within the building. This fire protection strategy is supported through a performance based structural fire engineering solution, to demonstrate that the proposed steel design can satisfy the Performance Requirements of the Building Code of Australia. The development of a robust fire safety strategy for the building will be paramount in the successful delivery of a flexible design ensuring the achievement of the architectural vision for the building whilst still prioritising fire safety.

ASB North Wharf

ASB North Wharf, headquarters of ASB bank and the anchor project in Auckland’s Wynyard Quarter, was a first-rate example of flexible working spaces and sustainable design when it was completed in 2013. The building spans two sites, with a multi-level glazed walkway over a central public lane that provides access through to the adjacent Waterfront Theatre site. 

The ‘Activity Based Working’ design presented a number of challenges that required performance based solutions. 15 individually themed, open areas were designed for flexible working also required a flexible evacuation design flexible to allow for the building’s occupants to move between floors. By utilising a performance based approachHolmes Fire reduced the number of stairs required by a prescriptive solution, supporting the project’s objective to create an open and flexible layout. The evacuation plan also was designed to be flexible and utilise the open interconnecting stairs for egress in some fire scenarios.  

Sustainability was also a significant factor that influenced the design and use of the building. The addition of a ventilating funnel and controlled internal shading have assisted in the reduction of the building’s energy use by 50% and resulted in the completed building achieving NZGBC 5 Star Green Star Rating for Office Design. While the ventilation funnel provided beneficial natural lighting throughout the building, Holmes Fire designed a smoke management system that not only aligned with the ventilation system but also avoided the need for a dedicated smoke control plant. A ‘hot smoke test’ was conducted by Holmes Fire following the completion of the project demonstrating the strategy for smoke movement in action. 

Flick through all 7 storeys and explore ASB North Wharf from the comfort of your own home.

Flinders Centre

Flinders Centre is a high-rise A-grade commercial tower extension to the existing Bankstown Sports Club. The tower was officially completed at the end of 2018, following a 3.5 year involvement by Holmes Fire from the early concept design, through design development and construction till occupation.

Flinders Centre is eleven storeys, containing a gym, childcare, and commercial spaces. A future rooftop bar was also considered in the design, expected to be pursued in the near future. The tower is served by four high speed lifts contained in a feature glass shaft enclosure on the eastern side of the building, complementing the floor to ceiling glass walls on all sides of the building. The glass lift shaft was demonstrated as providing an equivalent level of protection as a conventional lift shaft to evacuating occupant and fire fighters, through a performance based fire engineering solution prepared by Holmes Fire, by providing a suite of subtle fire safety features.

Holmes Fire also took into account existing fire engineering solutions to the remainder of the development, including complex interactions between the existing and new building parts, to allow the building to function as one whilst maximising the safety of occupants during evacuation.  The fire engineered solutions provided by Holmes Fire included:

  • Rationalisations to the stair pressurisation system
  • Extended travel distances
  • Fire stair discharge
  • Omission of smoke exhaust from the office tower
  • Sliding doors used for egress purposes
  • Provision of a combustible roof pergola
  • Rationalised protection of supply air control equipment

Throughout this project, Holmes Fire worked closely with the client, architect, services engineers, fire brigade, Council, BCA consultant, and the builder to develop cost effective, practical and aesthetically achievable solutions which ultimately meet the design objectives whilst achieving suitable levels of fire safety for the building’s occupants and fire brigade personnel.

Holmes Fire has been involved with numerous other extensions and fitouts of other parts of Bankstown Sports Club, including the construction of the Travelodge Hotel, restaurant fitouts, feature light installations, carpark modifications, café remodelling, plant room modifications, and ad hoc advice.

The Poche Centre

The Poche Centre is a purpose designed building providing research, teaching, education, consultation and treatment facilities for the Melanoma Institute Australia. The building
contains auditoriums, laboratories, consultation and examination areas as well as administrative and car parking facilities. The building was designed to provide flexibility in the use of each space, an objective that can clash with the prescriptive requirements of the Building Code of Australia (BCA).

Holmes Fire was engaged to provide fire engineering services in relation to a number of non-compliances with the Deemed-to-Satisfy Provisions of the BCA including reduced fire resistance levels, extended travel distances, egress via a steep ramp, deletion of sprinklers from the concealed floor space, and the non-compliant locations of the fire brigade hydrant booster connection and the sprinkler valve / hydrant pump room. Our experienced engineers were able to halve the required fire resistance level for the laboratory areas by considering the specific nature of the research and testing undertaken in these areas. This represented a considerable cost saving to the client and enabled the building to maintain
maximum functionality. Furthermore, by proposing fast response sprinkler heads within the carpark, Holmes Fire was able to justify extended travel distances without introducing significant additional costs for the project.

Holmes Fire also undertook construction monitoring for the project, attending regular site meetings to provide ongoing fire engineering advice to ensure the works were carried out in accordance with the fire engineering design.

Grosvenor Place

The iconic Grosvenor Place complex is in Sydney’s CBD, bounded by George, Grosvenor, Harrington and Essex Streets. It features a two-storey ground floor entrance lobby and 44 levels of office accommodation providing 80,000 m2  of leasable floor area. The project involved a two stage refurbishment, including remodelling the existing food court and enclosing the lobby.

Holmes Fire was engaged to provide fire engineered solutions where the building was unable to comply with the BCA Deemed-to-Satisfy Provisions. These non- compliances were due to the constraints of the existing building, that in some cases were not identified until site works began.

The building design incorporated multiple extended travel distances, often through the high space lobby. Alternative Solutions were developed to demonstrate that the large smoke reservoirs provided a greater level of safety for egressing occupants than in a Deemed-to-Satisfy compliant building, despite the extended travel distances. As such, Holmes Fire was able to use the existing attributes of the building without requiring additional fire safety measures.

Reduced dimensions within the paths of travel from back of house and maintenance areas were justified by the use of signage and the implementation of management procedures that incorporated requirements for confined space access. Solutions were also provided for the non-compliant location of fire hose reels and the deletion of sprinklers from beneath external awnings and areas where it was impractical to provide coverage due to the proposed design and use.

A central, architectural element of the building is the circular stairway connecting the lower and upper lobby areas. Our design justified non-compliance with this stairway, allowing the client to maintain the architectural detail of this feature.

Throughout the project Holmes Fire worked closely with Grosvenor Place management to provide solutions that would be conducive to the day-to-day functionality of the building. The resulting assessment presented acceptable solutions for all stakeholders, reducing construction costs and time for the builder, maintaining original architectural features and providing practical and manageable solutions for the end user.

Auckland Art Gallery (Toi o Tāmaki)

Seismic strengthening, major refurbishment and new extensions were constructed at the Auckland Art Gallery. The fire safety design involved a challenging mix of conflicting aspirations. The existing building – one of the oldest in Auckland – was the first municipal art gallery built in New Zealand and contains the most valuable public art collection in the country.

To retain the building’s heritage features, sensitive refurbishment and upgrading fire safety was of utmost importance. Key features of the architectural design include the impressive four storey north atrium and the three storey south atrium. The new and refurbished parts of the building required large, interconnected open plan spaces with a high degree of openness and visual connection to adjacent galleries and atria.

Because the building has to deliver very specific performance requirements, the fire safety engineered solution was equally performance focused: innovative to suit this client and this architectural design. The regulators expressed concern about the number of design issues that were required to vary from ‘standard fire approaches’ and insisted on an extreme level of engineering justification. Holmes Fire responded with engineering design solutions that addressed the significant challenges of this unique architectural masterpiece.

The fire engineering brief evolved over five years, with contributions from art curators, gallery event managers, international exhibition advisors, architects, security consultants, structural and mechanical services engineers, Fire Service and Auckland Council regulatory reviewers. The final fire safety strategy successfully achieved the outcomes required by the fire engineering brief.

Holmes Fire used computational fluid dynamics analysis to model smoke movement and also evaluated the movement of people in a fire emergency, using a variety of engineering building use scenarios for safety and robustness. The main public circulation routes are also used as principal fire egress routes (allowing fewer dedicated egress stairs than prescriptive regulatory requirements).

Holmes Fire coordinated a detailed review of fire protection requirements in all areas storing and displaying art. Holmes Fire designed the systems controlling fire and smoke spread to protect the building, the art collections and the building occupants. ‘Standard’ solutions for exit signage and security on exit doors were modified to suit the specific requirements for this building.

Canterbury Leagues Club

The Canterbury Leagues Club in Belmore has long been one of Sydney’s premier hospitality destinations. Holmes Fire has been involved in many of the upgrades and extensions to the building that have occurred over the years as the club expanded in size and patronage. The Club incorporates bars, entertainment lounges, restaurants, gaming, health club, function spaces and carparking.

Since the building has been constructed in a piecemeal manner, with many extensions at different times, Holmes Fire provided a holistic fire engineering assessment of the building in 2010 to check that the design and operation of the building as a whole would be adequate in the event of a fire. This involved fire and smoke modelling to assess the impacts of potential fires and computer modelling of a complete building evacuation to determine the egress characteristics of the building.

Canterbury Leagues Club recently underwent a master plan redevelopment to add a five-storey basement carpark, café and gaming areas. Holmes Fire provided Fire Engineering services as part of a large consultant team to develop a practical fire safety design that integrates with the existing fire safety design and enables a number of cost savings through the application of Alternative Solutions.

Key benefits of Holmes Fire’s involvement are the provision of an Alternative Solution to permit the architectural glass lift and water feature to connect all levels of the five-storey basement and permit the fire-isolated stairway to discharge into the lift lobby. These aspects of the design enabled the architect and client to achieve the desired aesthetic in the area that would form the primary entry point for patrons.

As the Club was to remain operational during construction works, Holmes Fire provided an Interim Fire Safety Strategy to justify temporary fire safety non-compliances such as blocking of egress routes and reduced exit widths. Through the application of management procedures that Holmes Fire developed, the construction was able to proceed uninterrupted, whilst still affording a suitable level of fire safety for occupants within the operations areas of the building.

Auckland Museum Grand Atrium

The Auckland War Memorial Museum is one of New Zealand’s iconic heritage buildings. The Grand Atrium project involved the construction of a large suspended bowl structure in an existing open courtyard within the southern part of the original building.

The addition to Auckland Museum included a large exhibition space, workshop and storage areas, education facilities, a 200 seat auditorium and a spectacular events centre at roof level with panoramic views of Auckland.

By utilizing a wide variety of performance based fire engineering design methods, specifically tailored to the constraints imposed by the building’s configuration and uses, Holmes Fire optimised the performance of the egress routes within the addition, minimized the amount of applied fire proofing needed for the structural steelwork and verified the extensive use of architectural timber lining.

Holmes Fire’s fire engineering services enabled the architect’s original vision for the project to be realized with a minimum of compromise and in a manner that significantly exceeded the client’s expectations.

St Vincent’s College

St Vincent’s College, Potts Point has recently finished a refurbishment to its Block B buildings, improving the circulation between classrooms and adding an all-weather outdoor space. The new addition, designed by ThomsonAdsett Architects, features open walkways overlooking a covered breezeway, which has a modern aesthetic featuring glass and concrete, contrasting to the heritage façade it is connected to. The overall result is an impressive construction, improving the functionality of these once disconnected buildings, whilst being sympathetic to its heritage features.

The design incorporates louvered glass walls creating a breezeway, transforming a once dark and neglected area of the building into a bright airy, all weather space for students to enjoy during their class breaks. Holmes Fire played a key role in the realisation of this architectural vision, using a performance based approach to justify omission of sprinklers to much of the breezeway, the use of natural ventilation instead of mechanical smoke exhaust and the use of a glass feature stair for egress.

The experienced Fire Engineers at Holmes Fire used CFD (Computational Fluid Dynamics) modelling to assess the impact of potential fire scenarios and married that with results from and computer based egress modelling to demonstrate that students, staff and visitors would be afforded sufficient time to evacuate safety.

RRSIC – Ernest Rutherford Stage 1

RRSIC Stage 1 project was the larger and more technically challenging of the two stages of the Rutherford Regional Science and Innovation Centre. With a total project budget of $216 million for Stages 1 and 2, the new centre will provide accommodation for the College of Science, along with an unprecedented resource for the Canterbury region.

Minimisation of fire separation to reduce fire rating to services and penetrations was critical to the client and architectural vision for an open and connected teaching environment. This also contributed to ease of construction, reduced construction cost and minimising future maintenance requirements for the building.

During the period between design approval and completion of the building the fire design withstood several changes to the building design with minimal implications. This demonstrated the risk consideration/robustness approach to the final functionality and buildability applied to the final fire design, while still minimising ‘over design’. The fire design gave the other consultants and client and confidence to design and not mandate or constrict their solutions.

The design stages were delivered on time and on budget, with active involvement through the extended construction period required by Fletchers.

Holmes Fire also provided structural fire analysis using finite element methods to demonstrate the capacity of specific structural members.

Australis Nathan Building

These historic buildings, built in 1903 and 1904 were originally warehouse and storefronts for importers and merchants, fast forward over 110 years and these have been transformed to bring these heritage buildings back to life. Australis House and the Nathan Building was an ambitious refurbishment combining the two buildings to function as a single structure and repurposed them to include high end retail, hospitality and office spaces. These buildings had strong character with a combination of cast iron columns, heavy timber columns and beams, timber floors with herringbone bracing and impressive brickwork.  

Our brief on this project was to avoid providing ceilings beneath these floors and encasing these columns in order to celebrate these features. Our performance-based design solution involved a combination of sprinkler installation, assessment of inherent timber strength and application of clear intumescent coatings to achieve sufficient fire separations within the building and achieve Building Code compliance.

B:Hive Smales Farm

B:Hive is taking commercial space to a new level offering shared office space that is fresh, vibrant and architecturally impressive! This new build construction has seven levels in total. One basement level (below ground) for car parking, one on-grade ground floor level which provides hospitality tenancy spaces, meeting room and breakout spaces, entry foyer and reception for the offices above. Above this are four levels of serviced office space leased on highly flexible short term and long term basis. The top-most level is dedicated for plant and building services.  

The 11,000 square metre building incorporates a diverse mix of office uses, with a mix of dedicated and shared spaces. It has the ability to house businesses from 10 to 310 employees per floor: from small startups to established corporates. 

Two features key to the design flexibility and interactive working environment are the open atrium and stair interconnecting all office levels and the ability for tenants to use flexi-space with up to 50% more occupants than a standard office building design. Using a novel smoke control strategy developed collaboratively with the day-to-day ventilation design, Holmes Fire justified a fire safety solution which avoided the need for fire curtains or smoke separations around the atrium.

Pier B Extension, Auckland International Airport

Auckland Airport has a number of expansion phases planned and underway on its International Terminal. The expansion of Pier B added two new gates (17 & 18), increasing the number of international aircraft using the airport. The 190-metre extension enables Pier B with the flexibility to accommodate a total of four A380 or eight smaller A320 aircraft at any time. In addition, the Pier B bus lounge was expanded from two boarding gates to four, to allow greater ability to board flights using aircraft located away from the terminal.

The project challenge for Holmes Fire was the delivery of the construction phase in five stages, whilst maintaining the continuous operation of the airport for commuters and staff alike. Construction involved temporarily relocating the principal three main egress stairs for Pier B and then reinstating these into the permanent design. All of this needed to be undertaken without adding significant cost through temporary works.

Working with interim strategies is a frequent request of our clients, where we need to strategise closely with our project stakeholders, ensuring smooth transition of construction through to operation whilst meeting adequate safety requirements through the entire process. In doing this we take to time to understand the constraints and provide options to ensure the most workable solutions are adopted.

Using performance-based design solutions for the project provided a more efficient egress design including reduced construction costs for the client where we enabled the elimination of stairs that were part of previous fire strategies.

Feature New Zealand landscape artwork and sculpture is also incorporated to the design, welcoming guests to this area of the international terminal which has also been fitted out with a new retail store and food and beverage outlet. Feature ceilings provided challenges to our fire protection design to ensure that sprinklers were installed to operate effectively, and without compromising the aesthetics.

Blyth Performing Arts Centre

The new Blyth Performing Arts Centre at Iona College, Hawkes Bay sits proudly near the entry to the school. The building houses a 400 seat auditorium, entry foyer and associated back of house and support facilities essential for a performing arts centre environment. The building adopts the use of timber throughout, adding warmth to both the performance space and the building’s exterior. The asymmetric and gracefully curved roof of the building further adds an embracing character to the acoustically refined space.

Holmes Fire undertook a Fire Engineering Briefing (FEB) process for the Performing Arts Centre building, to establish the key parameters for the fire design from relevant project stakeholders prior to the building consent stage. Identified during the briefing process, the fire engineering design also considered the school’s intentions for a future additional stage of works to extend the centre’s facilities.

We provided Performance-Based Engineering design services for the building, which included smoke and egress modelling to determine fire safety compliance within the auditorium and foyer spaces.  This enabled the design to optimise the number and width of egress routes provided within the building, in turn enabling higher utilisation of floor area for public and support activities.  The location and extent of passive fire separations was carefully considered throughout the building to minimise the impact that these would have on theatre functionality and maintenance. Liaison with the local fire brigade also was critical to achieving appropriate fire fighting facilities, whilst minimising the impact of the relevant equipment on the welcoming aesthetic of the building.